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Abstract— A new technique is developed for approximating exchange factors for specular radiation passages.
It is shown that for a large class of configurations, even with curved reflector surfaces, the average number of
reflections (n) can be calculated by a simple analytic formula and without any ray tracing. The fraction of
radiation transmitted through the passage, 7 (one of the exchange factors), can then be approximated by ©
~ p<™ if the specular reflectivity p of the passage wall is high. A rigorous lower bound is derived which agrees
with the exact result within a few percent for any ¢ = 1 — p, provided & n} is not too large. Several examples
are discussed, including cylindrical passages, V-troughs and compound parabolic concentrators. The
method is particularly useful for calculating transmission and absorption of radiation in solar concentrators.

NOMENCLATURE

A, area, with appropriate subscripts, e.g.

A, = reflector area;

concentration,= A,/A4g;

exchange factor, with appropriate subscripts,

e.g. By ,(p) = exchange factor for

radiation from B to A;

F, shape factor, with appropriate subscripts,

e.g. Fy., = shape factor for radiation

from Bto 4;

average number of reflections, with

appropriate subscripts, e.g. (1) _,

= average number of reflections for

radiation from B to A4;

probability of n reflections, with

appropriate subscripts, e.g. Py _ ,(n)

= probability of n reflections for radiation

from Bto A;

o, radiation heat transfer (power), with
appropriate subscripts, ¢.g. Qp_, , = transfer
from Bto A, and Qp.. 4 = net transfer
between B and A;

T, absolute temperature, with appropriate
subscripts, e.g. T, = temperature of

C,
E(p),

),

P(n),

reflector;
g, emissivity (absorptivity) of reflector;
0, = 1 —¢, reflectivity of reflector;
o, Stefan—Boltzmann constant;
1, transmission factor,= E, _4(p)-

The subscripts 4, B and R refer to entrance aperture,
exit aperture and reflector wall, respectively. The
quantities !, h, r, n = l/r, ¢, 8 designate characteristic
dimensions or angles of radiation passages.

1. INTRODUCTION

RADIATION heat exchange in enclosures with specular
surfaces can be extremely difficult to calculate, es-

*Work supported by the US. Energy Research and
Development Administration.
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pecially if the specular surfaces are curved. Only in the
last two decades has this problem been studied
systematically [1-3]. The introduction of the ex-
change factor was a very significant advance since it
provides an elegant general framework for the analysis
of radiation transfer between surfaces which are
partially specular and partially diffuse. The evaluation
of the exchange factors themselves, however, has
remained a tedious task, generally involving the
summation of a large or infinite number of reflections.
For this reason many calculations rely on computers
to carry out the ray tracing. Such numerical methods
can consume a great deal of computing time in system
optimization studies. On the other hand, a simple
analytic formula, even if only approximate, may be
valuable not only because it saves computer time, but
also because it can provide better intuitive understand-
ing and serve as guide in the selection of a good design.

This article presents a new approach which is based
on the concept of the average number of reflections
{ny, and provides a simple approximation for the
transmission factor 7, ie. the fraction of radiation
which is transmitted through a specular passage. In the
notation of [3] and Fig. 1, 7 is an exchange factor, t
= E, _g{p). Since exchange factors depend only on the
specular component p, of the reflectivity, we shall
assume p = p; throughout this paper. (n) is defined
with respect to radiation leaving an emitter (rather
than arriving at an absorber) and hence it depends

A

B

FiG. 1. Radiation passage; entrance aperture A4, reflector
wall R, exit aperture B.
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only on geometry but not on surface properties. Two
formulas are derived which are useful whenever (n) is
sufficiently small (generally {n)> < 1). The first one, t
~ p<™ is appropriate if the reflectivity p of the passage
wall is high. The second one, just slightly more
complicated, is actually a rigorous lower bound which
agrees with the exact result to within a few percent
when g(n) < 0.1, for any ¢ = 1 —p. For some con-
figurations, good agreement is obtained even for
gnyz 1

The paper is organized as follows: In Section 2, the
connection between exchange factors and average
number of reflections {n) is established by considering
the radiation balance of the reflector, and the approxi-
mation t ~ p¢™ and the rigorous lower bound are
justified. The remaining sections deal with examples
where (n)> can be calculated without ray tracing. In
Sections 3 and 4, respectively, the approximations are
compared numerically with the exact solution for
circular cylindrical passages and for compound para-
bolicconcentrators. Further examples; parallel straight
reflectors, cylindrical reflectors, V-troughs, modified
compound parabolic concentrators and convolute re-
flectors for tubes, are discussed in Section 5. We close,
in Section 6, with some comments on the general
applicability of this technique.

2. RADIATION TRANSFER THROUGH SPECULAR
PASSAGES AND AVERAGE NUMBER OF REFLECTIONS

It is convenient to consider a radiation passage as a
three-surface enclosure, as shown in Fig. 1, where R is
specular, and A and B are diffuse. Since the formalism
for calculating heat transfers in terms of exchange
factors is well understood [3], we shall concern
ourselves only with the evaluation of the latter. The
exchange factor is defined as that fraction of the diffuse
radiation leaving one surface which reaches another
surface either directly or via any intervening specular
reflections. For example, E; _ ,(p,) for the passage in
Fig. 1 is the fraction of the diffuse radiation emanating
from B which reaches A4 directly or after specular
reflection(s) off R; p, is the specular component of the
reflectivity of R. Exchange factors are functions only of
geometry and of the relevant specular reflectivities, in
particular, they are independent of any diffuse com-
ponents of reflectivity. Therefore, the exchange factors
for the passage in Fig. 1 can be calculated by assuming
R to be purely specular, p = p,, while 4 and B are
perfectly black; this is a substantial simplification of
the problem.

Let us analyze the radiation transfers in Fig. 1, using
the notation Q for power, A for area, and T for
absolute temperature, with appropriate subscripts for
each of the three surfaces 4, B and R. Of the radiation

Q4 =AA‘77:44 (1)

emitted by 4 a fraction E, _g(p) arrives at B while
another fraction, E, _ ,(p), is sent back to 4. By energy
conservation, the remainder

Qi-r=[1-E, 3(p)—E, —A(ﬂ)]AAUTf (2)
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must have been absorbed by the reflector R. If the
reflector is a diffuse emitter emissivity ¢ = 1 — p, then
the radiation transfer from R to 4 is

Qr-a = Eg—4(p)AgecTy 3)
Eg _ 4(p) being, of course, the fraction of radiation from

R which reaches A. By the second law of thermody-
namics, the net transfer

Qior=04-r—Qroa 4)

must vanish if the temperatures T, and T, are equal.
Thus, one can extract the relation (c.f. equation (9—44)

of [4])

Ag
1~EA-B(p)_EA—A(p)=ETER—A(p)~ (5)
A

For the transfer between B and R, we assume that

Eg _glp)=0, (6)

i.e. no radiation emitted by B returns to B; this is
certainly true for passages whose width increases
monotonically from B to A4, as suggested in Fig. 1 or for
passages of constant width as for example Fig. 3. We
shall exclude from our considerations “constricted”
passages of the type shown in Fig. 2, because for these

Fi1G. 2. Radiation passage for which neither E, _ , nor Eg_g
vanish.

Fi1G. 3. Cylindrical radiation passage of length / and radius r.

neither Eg_p nor E, _, vanish and our technique does
not yield any useful information. Then the relation
analogous to equation (5) turns out to be

AR
1—Eg_,(p)=e——Eg_plp). (7

AB
From the radiation balance between 4 and B, one
further finds.the wellknown reciprocity relation [ 3, 4]

A E, plp) = AgEy_,(p). (8)

In many cases, the quantities E; _ ,(p) and Eg _z(p)
turn out to be easy to calculate at the end points p = 0
and p = 1. At p = 0, they reduce to ordinary shape
factors

Eq-4(0)=Fg_, and Eg_4(0)=Fg_p. (9)
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The calculation at p =1 will be discussed in the
following sections; for the moment we only point out
the relation

Eg-a()+Eg_p(1)=1 (10)

which obviously follows from energy conservation if
no radiation is trapped inside the cavity. As p in-
creases, less of the radiation emitted by R is adsorbed
on the way to A or B; therefore, E; - (p) and Eg _5(p)
grow monotonically with p. By virtue of equations
(5)—(8), their values at p = 0 and p = 1 provide rig-

sy
orous upper and lower bounds for all five exchange

factors.

Furthermore, for small ¢ the exchange factor
Eg _g(p) becomes equal to Eg . g(1)—0(e). Therefore,
equation {7) becomes, in the same limit,

AR
1—E, Jdp)= 3A~ Eg-p(1)—0(%);

in other words, knowledge of E,_z(1) determines
Eg_ ,{p) to order ¢. In a similar manner, equations (5},
(8) and (10) determine E, _g(p) and E , 4(p) order e.

The upper bounds on the exchange factors can be
improved even further (by what amounts to another
order in ¢, for most configurations). The exchange

factor Ep _g(p) can be expanded in a power series
fotofi+0%h+ (1)

where p™f, is the fraction of the diffuse radiation from R
which reaches B via n specular reflections. Since p”
< p, this implies the inequality

Ep sp) S +olfi Hatfi+..))

Eg_glp) =

which can be rewritten as (note f = Fg_p)
Eg-5(p) < Eg - s(1)—e[Eg (1)~ Fp_p]. (12)
From this follows by use of equation (7) the rigorous
lower bound 1, for Eg_ 4
A
Eg-ulp) Z 1ip. = 1—¢ f Eg-5(1)
B
2 Ag
+&? —[Eg _p(1)—Fg-g]. (13)
AB

In order to provide both an intuitive interpretation
and a simpler one-parameter approximation for the
exchange factor E;_,{p), we consider the average
riumber of reflections {nd, ., which radiation has to
undergo on its passage from B to A. Clearly, if all rays
make n refiections, the exchange factor must be equai
to p". For the general case, however, one has to write

Z P "Py_4(m), (14)

=0

Ey_,(p)=

whara P (n) is the nrobability that diffuge radiation

WACIC g 17 15 UL PrOla ity Uiy GLUss Tatiauelt

emitted by B make exactly nreflections before reaching
A. Let us convert this power seriesin ptooneing = 1
— p. Using the binomial expansion to rewrite equation
(14) as

70\

H

Eg_u(p)= Y Pg_,m) ¥ (,; (—ef (15
n=0 k=0
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one obtains, after interchanging the order of sum-

mation,
E.. .(p): i /{n\\

-4 (-2
k=0 \\K// 54

= 1~&npp- 4 +0() (16)
where the expectation values are defined by
(™Y =3 P xf\ (17)
\\K)/5-a 00
Expanding in a similar fashion, the quantlty
2
o™= 1-¢nde + —— n > —-+... (18
one learns that in general, the formula
Ep-(p) = p> 4 (19)

is valid only to lowest order in ¢; it is exact if and only if
(nk_ = (g, forallk=0,1,2.... (Since ((n*)
~{n>2)M? is the standard deviation, this condition is
satisfied only if all rays make the same number of
reflections.) For many configurations ¢n)?_, and
<{n*yg_, will not differ significantly and hence this
simpie formiula can give good numerical resulis even
for fairly large &. We present some numerical examples
in the next section.

The average number of reflections is found by
combining equations(7) and (16) and taking the limit ¢
- 0, with the result

(n5-4= 2 Easl) (20
B
In some cases the interchange of summations* in
equation {15) may not be justified. However, a slightly
more complicated proof, presented in the appendix,
shows that eguation (20) holds whenever Pg_ ,(n)
decreases fast enough as n — oo to make {n>; _ | finite.
In terms of {n);_,, the lower bound (13) can be
reexpressed in the form

Eg_ 4lp) 2 tp.=1—8(mp_4
+82[<">B~A —Fy_g] (21

where Fy _p is an ordinary shape factor.

The exchange factor E, _ 4 canalso be interpreted in
terms of an average number of reflections. For this
purpose, it is appropriate to define the average (n), . 4
with respect to that fraction of the diffuse radiation
from A which can get back to A; this fraction is given

by

Ap
E,()=1-—. 22
4-4(1) A, (22)
Equations (5), (7) and (8) can be combined to
Ex-ap) = Eacall)+5 32 [Enal0)~ Ex-4(0)].
AA
(23)

*See any textbook on analysis, e.g. [5].
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Comparison with
Eq-alp) = Eq-4(Dp<me- (24)

in the limit ¢ -0 yields the average number of
reflections

A
1=, [Enes)=Exu(D]. 25)

(B gy =

3. CYLINDRICAL RADIATION PASSAGE

It is instructive to compare the approximations
developed in this paper with the exact solution for the
case of the cylindrical passage, Fig. 3, one of the few
nontrivial examples for which the exact solution is
known [2]. Even though neither E, _{p)nor Ep_3(p)
are listed explicitly in [2], they can easily be derived
from the exchange factor E,, .. , for radiation from an
infinitesimal ring element dR. The latter is given in
equation (29) of [2]

_77_i ~+,2L
il 2n 7

Egg-4=23 p"! 7aNe 7% " an
G
2n

where 5; = I/r is the coordinate (along the cylinder
axis)of dR. Eg .., is found by averaging over the entire
wall R

(26)

1

i
Ep_g=Eg-,= ;J‘ dn Egp - almi). (27)
0

where = I/r. Inserting equation (26) and integrating,
one finds

" 27172
~1 n—1 1 - l
Ep-4lp) =738 ng{ p {[] +<2n) ] (2”)}.
(28)

Combined with equation (7), this yields the desired
exchange factor E, _g(p) (= transmission factor t)

t=E  glp)=1-n } p"!

n=1

231/2
U ]
x| 14| — ——=1. (29
LG | -G e
With regard to the approximations, we note that
symmetry implies

ER-A(P:“:%» (30)

because in the limit p — 1, all radiation emitted by R
must escape either through 4 or through B. (Of course,
the p — 1 limit of equation (28) agrees with that.)
Together with the area ratio

€Y

this implies, via equation (20), that the average number
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of reflections is

[
(ny ==

r

(32)
for a specular cylindrical radiation passage of length /
and radius r. Since the radiation shape factor F _, is
Fy-p= '1(1’*"74/4)”2—’12/2» (33
the lower bound (21) for the transmission factor is
E i pp)Z 1, =1-ne
+e[n—n(+n*/4)' % +9?/2]. (34)
In Fig. 4, we have plotted the exact solution (29) as
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~ 05

10
- T p:0.7
L '_\\ Py
~ L
| N St
N !
N ~a
L . <
= 05 N
: p03 <
\
- N
L \\
[ S WV T S AU SO O A N
0 05 10
L

F1G. 4. Transmission factor 1 for cylindrical passage for
different values of p. Solid line exact solution (29); dashed line
lower bound (34); dotted line p<*.

solid line, the lower bound (34) as dashed line, and the
approximation

o~ gt (35)

as dotted line, for several values of p from 0.1 10 0.9. As
expected, the approximations are reliable when e(n) is
small. For example, if &{n) < 0.1, the simple formula
p™ is accurate to at least 3% for ¢ < 0.3, while the
lower bound (34) agrees with the exact answer to about
19 for alle > 0.3.

4. COMPOUND PARABOLIC CONCENTRATOR

A radiation concentrator of considerable interest for
solar energy collection is the compound parabolic
concentrator [6-8). It consists of two parabolic seg-
ments, arranged as shown in Fig. 5. Here we consider
only the two-dimensional, or troughlike version. This
concentrator has the property of accepting all radi-
ation which hits the aperture A within the acceptance
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Axis of )

parabola Parabola

Focus ot
parabola

F16. 5. Compound parabolic concentrator with acceptance
half angle 6.

angle (16,,| < ) and concentrating it by a factor
A, 1
Ay sin@’
(The three-dimensional, or conelike version con-
centrates by 1/sin?6.) (This is the maximum con-
centration permitted by the second law of thermody-

namics [8-107.) All radiation outside the acceptance
angle, i.e. |0;,] > 8 is rejected as indicated in Fig. 6.

(36)

Fraction of radiation
transmitted

)
10

05+

8 ]

(g}

FiG. 6. Fraction of radiation incident at angle 6,, on aperture
A of compound parabolic concentrator of acceptance half
angle, Fig. 5, which is transmitted to exit aperture B,if p = 1.

For this configuration, E; _;(1) is easy to calculate
because radiation cannot cross over from one side of
the reflector to the other if it is to get from A4 (or R)
to B. Therefore, the exchange factor E4r-5(1) for an
infinitesimal element dR of the reflector is
/2

cos 8" df = 1/2(1—sind,),
G7

0, being the angle between reflector normal at dR and
the line from dR to the far edge of the absorber B as
shown in Fig. 7. The complete exchange factor is found

Esr —B(l) = 1/2f

8.

FiG. 7. Calculation of E;z_g(1) for compound parabolic
concentrator,
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by averaging E,p - p(1) over the whole reflector area:

1
Ep-p(l) = A—j dR Egp_5(1). (38)
AR

R
For the integration, it is convenient to use a particular
coordinate system, for example, cartesian coordinates
with y axis along the parabola axis, but the result is, of
course, coordinate independent

Ep (1) = 1/2{1 _ A_A(l—sin 0)(1+2sin 6)]‘
AR

sin @
(39)
For the reflector area one finds,
Ag = A, sin 6(1 +sin e){ ",0529
sin*
(1+sin 61 +cos 6)
[sin #{cos 8+ [2(1 +sin 9)]"'2}}
B J2cos b } “0)
(1+sin 8)*?

and hence the average number of reflections, as a
function of the acceptance half angle 8, is given by

9
(Mg = 1/2(1 +sin 9){&

sin? 0

(1+sin 6)(1 +cos 6)
+log — -
sin 8{cos 8+ [2(1 +sin 6)]Y/%}
J2cos 8 {1—sin 6)(1 +2sin §)
(1 +sin §)3/2 2sin® @ ’

(1)

Incidentally, the 6 —0 limit of (n), for the con-
figurations of both Fig. 5 and (iv) in Table 2, is
11 ! 42)

g4 — - log—.

{Mp-4 3 {3 g
We have written a ray tracing computer program to
calculate the exchange factor E, _ ,{p) for compound
parabolic concentrators for various value of p. The

results, displayed in Table 1, indicate that for moderate
concentrations (C < 10, {n)> < 1.3) the simple formula

T=Eg_,(p) > piWe-a

is good to about 4% for p above 0.7; the lower bound
(21) agrees with the exact answer to better than 7% for
all values of p. The smaller (n), the better the
approximation, for example, for C < 6, (n)> < 1.0, the
lower bound (21) reproduces the exact answer within
2%, for any p.

Radiation incident on the aperture outside the
acceptance angle (16,,| > 6) of a compound parabolic
concentrator bounces back and forth between the
reflector walls until it reemerges through the aperture.
In order to estimate the fraction of this radiation which
is absorbed by the reflector, we have calculated [11]
the average number of reflections for these rays. It
turns out to be

(> o =2+1/5in8; (43)
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Table 1. Exchange factor Eg .. ,(p} for compound parabolic concentrator as a function of
reflectivity p and acceptance half angle 0 (the left column also lists the concentration ¢
= 1/sin @ and the average number of reflections). For each ¢ and p the table lists three
values for Ep_4(p): the exact value (top), "> (middle), and rigorous lower bound,

equation (21} (bottom)
¢ P
©)
O 0.100 0.300 0.500 0.700 0.800 0900 0950=p
5¢ 0.148 0.296 0.464 0.655 0.761 0.875 0.936
(11.47) 0.049 0.207 0.404 0.627 0.747 0.871 0935
1.307 0.137 0.275 0.443 0.643 0.754 0.873 0.936
10° 0221 0373 0.535 0.709 0.802 0.899 0.949
(5.76) 0.091 0.285 0.485 0.689 0.792 0.896 0.948
1.044 0216 0.364 0.526 0.704 0.799 0.898 0.948
20° 0.330 0.471 0.616 0.766 0.842 0,920 0.960
(292) 0.156 0379 0.572 0.750 0.835 0919 0.959
0.807 0.329 0.468 0.613 0.764 0.841 0920 0.960
30° 0417 0.543 0.671 0.801 0.867 0.933 0.966
2.0 0212 0.444 0.627 0.786 0.860 0931 0.966
0.674 0416 0.542 0.670 0.800 0.866 0.933 0.966
40° 0.495 0.606 0.717 0.830 0.886 0.943 0.971
(1.56) 0.268 0.502 0.673 0.815 0.880 0942 0971
0.572 0.495 0.605 0.717 0.829 0.886 0.943 0.971
60° 0.655 0.732 0.808 0.885 0923 0.962 0.981
(1.16) 0412 0.629 0.766 0.872 0918 0960 0.980
0.385 0.655 0.732 0.808 0.885 0923 0.962 0981
80° 0.861 0.892 0.923 0.954 0.969 0.985 0.992
(1.02) 0.701 0.830 0.898 0.946 0.966 0.984 0.992
0.155 0.861 0.892 0923 0.954 0.969 0.985 0.992

*For each @ and p: top entry = exact exchange factor; middle entry = p<™; bottom

entry = rigorous lower bound, equation (21).

of course the average has been taken over all diffuse
radiation outside the acceptance angle, as implied in
the discussion in Section 2.

In [11], further details can be found which are
important in practice, in particular the effects of
truncation {i.e. cutting off a portion of the reflector) and
the transmission factor for collimated incident radi-
ation.

5. OTHER EXAMPLES

In Table 2 the area ratios, the exchange factor
Ey -.p{1)and the average number of reflections (n) , _
are listed for a variety of specular passages, as sketched
at the left end of each row:

(i) Parallel reflecting planes (of infinite extent in the
direction perpendicular to the plane of the paper),
length [ and separation h.

(ii) Cylindrical segment, useful for piping diffuse
radiation around corners.

(iii) V-trough, provided trough angle large enough
so no radiation from B to A can cross over from one
reflector side to the other.

(iv) Modified compound parabolic concentrator
which concentrates radiation onto both sides of a fin;
for details, see [8] or [12].

(v) Convolute refiector trough for circular tube.
Entrance aperture stretches from left end of dotted line
to right end of dotted line, and includes top portion of
tube. Exit aperture B is surface of tube [13].

6. CONCLUSIONS

The examples described above indicate that the
average number of reflections (n) is easy to calculate
analytically for the following two types of specular
radiation passages: (i) passages with sufficient sym-
metry such that E,_,(1) = Ep_g(1); and (i} two-
dimensional or troughlike passages where no radi-
ation crosses over from one side of the reflector to the
other on its way from A4 to B. Type (i) includes three-
dimensional passages like Fig. 3, but with arbitrary
rather than circular cross section. As further examples
of type (ii) we mention reflector troughs consisting of
straight segments, arranged such that no radiation
cross over occurs. More general cases, for instance,
conical passages of compound parabolic or of V-like
profile, are more difficult to analyze, although some-
times good estimates for Eg_p(1) can be obtained by
means of shape factors.

Quite apart from the calculation of (n) itself, we
have provided a framework for approximating the
exchange (or transmission) factor t= Ez_,(p) by
means of simple one-parameter or two-parameter
formulas, equations (19) and (21), respectively. These
formulas will certainly provide a good approximation
(to within a few percent) whenever t is larger than
about 0.9 or e{n) smaller than about 0.1, and in some
cases, good results are obtained even when e(n) = 1.

This approach is particularly useful for the analysis
of solar energy collectors because in this application
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Table 2. Examples of two dimensional or troughlike radiation passages

Radiation

passage Ap/A, Ar/Ag Ep_g(l) O
1 2k 12 i/
1 ¢ 1/2 &2
Frp Fyr
I/sin@ cosf 14+cosé
+ log( - ) 0.5cot? ¢
sin® ¢ sin § 3 - cos 8 1+cosé
cos @ 1+4cos @ f[ + Iog( - )
+ log( ) 1+cos 8 sin @
sin? 0 sin 0

1 F4
2(9 + —)
2

12 (6+f)f4

good optical efficiency demands that the transmission
factor t be reasonably close to one. Once {n) has been
calculated (either for diffuse or for collimated radi-
ation), 7 can be taken as p™ without any need to
repeat the calculation for each new value of p.
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APPENDIX

In order to derive equation (20) for the average number of
reflections, we had assumed that the order of summations in
equation {15) can be interchanged [5]. This is not justified if
the series fails to convérge absolutely. In fact, for con-
figuration where P, _ ,(n} falls only like some power of nas n
— oo (for example like n™* for the cylindrical segment of
Section 5, (ii)) most of the expectation values ((§)) are infinite.
In such cases, the power series in ¢ (16) for Ep _ ,(p) is not well
defined. We therefore present a proof which assumes only
that the probabilities decrease fast enough at infinity to make
{n>5_ 4 finite.
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In thc? following, we omit the subscripts for simplicity. We
start with equation (15), i.e. before changing the order of
summations,

E(p)= 3 P(m) Y GH—ef.

n=0 k=0

(Al

If ¢<n) is finite, one can separate the O(°) and O(s!) terms
from the series and write

E(p)= Y, P(?I)[i—ns+ Y (2)(-6)"]
n=0 k=2
= 1~&[(n> +Rz)] (A2)
with a remainder
I o n
Riey=- 3 Pim} ¥ GH—ef. {A3)
gnzi} k=2
It is convenient to express R(e) in the form
1 oo o
R(a):; Y Pm(t—er—11+ ¥ nP(n). (Ad)
‘n=0 n=0

Ari RaBL

With the help of the identity

(I—g)'—1=p"=1= ~(1—pll+p+p*+...p"" ")
n-1
=—& 2, ot (AS)
k=0
this can be recast as
Ed n=-1
Rig)= Y P} n— Y p"]. (A6)
n=0 k=0

This series converges for |p| < 1 and at p = 1 it vanishes,
hence

limR{g}=0.
£—0

Combined with equation (A2), the vanishing of R(g) at ¢ = 0
implies the result

A7)

lim Ey_,(p) = 1~ {(ndp- 8. (A8)
e=0
In the same limit equation (7) becomes
. AR
lim B, ,(p) = I“ETER -p(1), (A9)

e=0 B

and comparison of the coefficients of ¢ yields equation (20) for

(Mg -4

TRANSFERT PAR RAYONNEMENT A TRAVERS LES PASSAGES
SPECULAIRES—UNE APPROXIMATION SIMPLE

Résumé—On développe une nouvelle technique d’approximation des facteurs d’échange dans les passages
réfiéchissants. On démontre que pour un grand nombre de configurations, méme celles présentant des
surfaces réfléchissantes courbes, le nombre moyen de réflexions (n) peut étre calculé 4 VPaide d’un
formule analytique simple et sans aucun tragage de rayon. La fraction du rayonnement transmis a
travers le passage, désignée par 1 {un des facteurs d’échange), peut alors étre approchée par t ~ p si
le pouvoir réflechissant p de la paroi du passage est élevé. On en déduit une limite inférieure rigoureuse
qui est en accord avec le résultat exact a quelques pour cent prés pour tout & = L —p, pourvu que & {n)
ne soit pas trop grand. Plusieurs exemples sont discutés, comprenant les passages cylindrigues, sillons
en V et concentrateurs paraboliques composés. La méthode est particuliérement utile pour le calcul de
la transmission et I'absorption du rayonnement dans les concentrateurs solaires.

STRAHLUNGSAUSTAUSCH IN SPIEGELNDEN PASSAGEN

Zusammenfassung—Zur niherungsweisen Bestimmung der Austauschfaktoren fiir die Strahlung in
spiegelnden Passagen wird eine neue Technik entwickelt. Es wird gezeigt, dall die mittlere Zahl von
Reflektionen (n) fiir eine groBe Zahl von Konfigurationen selbst mit gekriimmten Reflektoroberflichen
mit Hilfe einer einfachen analytischen Formel ohne Verfolgung des Strahlenganges berechnet werden
kann. Der Anteil der durch die Passage durchgelassenen Strahlung 7 {einer der Austauschfaktoren) kann
durch 1 ~ p™ angendhert werden, wenn der Reflektionskoeffizient p der Passage groB ist. Es wird eine
streng giiltige untere Grenze abgeleitet, welche mit wenigen Prozent Abweichung fiir jedes & = 1 —p mit
dem exakten Ergebnis iibereinstimmt, solange e{n)> nicht zu groB ist. Es werden mehrere Beispiele
diskutiert, einschlieBlich zylindrischer und V-fSrmiger Passagen sowie zusammengesetzter Parabolspiegel.
Die Methode eignet sich besonders zur Berechnung der Strahlungstransmission und -absorption in
Sonnenkollektoren.

JYUYUCTBI NEPEHOC B 3EPKAJILHBIX KAHAIAX.
IMTPOCTAS ANITIPOKCUMALUA

Annorammsg — Pa3zpaloran HOBRIE MeETOR annpokcHMauud KodbQUUMEHTOB nyducTOoro obMena
3epKanbHLiX kaHanoB. flokazano, yTo ons GonbiumHCTRE KOHGUIypaiil, NaXe NPU HCKPHBICHHOMR
TIOBEPXHOCTH OTPAKATENA, CPERHEE YUCAC OTpaxeHul (#> MOXHO PACCYHTATH C MOMOLLBIO NIPOCTOH
aHanuTHyeckod dopmynnl, He npuberas x nocTpoeHu:o xopa sayuei. Ilpu GonbwumMx 3HaueHMAX
KO3QhHUHEHTA 3€PKANBLHOrO OTPAXKEHHA p CTEHKU KAHANA JOMI0 NEPEIaHHONO NO KaHANY H3jTyueHus
7 (onuH 13 KopduLMeHTOB 06MEHA) MOXKHO anNPOKCHMHPOBATE BhIpaXKeHHeM 7 X p<™, Onpenenena
TOYHAS HIOKHAS PaHHULa, COBMNAJAIOILAA B NpPEAEHaX HECKONbKHX MNPOLEHTOB CO CTPOrHM pe3yiib-
TATOM A7 JI060M BEMMUYMHBI £ == | — p NPH YCIOBAK HE O4eHb GOJbLIMX 3HAYEHHE £{n)>. PaccMoTpero
HECKOJIBKO TIPUMEPOR, BKJIIOMAA UHIHHIpH4ecKkue M V-00pa3Hble KaHaNbl W CNOXHbE Napabonu-
4eCKHE KOHUEHTPaTOpsl. Meroa B ocobennocTn ynobeH ans pacuera nponyckaHds M NOrJIOWEHHS
H3NYyMEHNA B CONHEHHbBIX AKKYMYNATOPAX.



